
[Chandran, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1462-1467]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
Investigating and Analyzing Malicious Events in Android Application

Aparna Chandran
 Department of Computer Science and Engineering, Nehru College of Engineering and Research Centre,

Thiruvilwamala, Thrissur, Kerala, India
aparnachandran1188@gmail.com

Abstract
Smart mobile devices have been widely used and the contained sensitive information is endangered by malware
events and codes. The malicious events caused by malwares are crucial evidences for digital forensic analysis, and
the main task of mobile forensic analysis is to find the malicious codes and reconstruct these events. However, the
reconstruction heavily relies on the code analysis of the malware. The difficulties and challenges include how to
quickly find the suspicious programs, how to remove the anti-forensics tricks of malicious code, and how to deduce
the malicious behaviors according to the code. To address this issue, a systematic procedure of analyzing typical
malware behaviors on the popular mobile operating system Android is proposed. Based on the procedures, the
deduction of Android malicious events is also discussed.

Keywords: Antiforensics, obfuscation, deobfuscation.

Introduction

Mobile devices are nowadays widely used to
deal with sensitive personal affairs, and are becoming
an attractive platform for cybercriminals. With the
fast evolvement of mobile OS such as Android and
iOS, and the growing processing capability of mobile
hardware, the number of smart mobile devices grows
exponentially. A huge number of malwares are
developed to threaten the data privacy and system
security of smart mobile devices, and bring new
challenges to forensic analysts. A modern digital
forensic analyst should know these threats and be
able to employ forensic analysis against mobile
malware. Most of the forensic analysis on mobile
devices focuses on the data acquisition process.
However, the scope of mobile malware forensics
extends from simple information retrieval to a series
of events reconstruction. The mobile malware
forensics often involves four aspects, identification of
suspicious programs, defeating the antiforensics
code, extracting malicious code from malwares and
malicious functions deduction. Traditional forensics
discusses the process of collecting static data as
digital evidence. The reconstruction of malicious
events involves connecting the relationship between
programs, operating system, hardware and I/O data.
Tiny details may be main obstacles of malicious
events reconstruction. Modern mobile malwares are
designed towards certain platform. The complexity of
both hardware (different CPU architectures, file
systems) and software (new mobile operating system)
challenge the inexperienced analysts. The

architecture and design pattern of mobile applications
differ widely from common applications on personal
computers. The purpose of this paper is to present a
systematic process of Android malware forensic
analysis, focusing on the deduction and
reconstruction of malicious events.

Android Malware

Most of the malwares on Android OS are
developed using JAVA programming language and
are executed on Dalvik VM engine of the system.
Although Android itself is a Linux based system, the
best way of malware invasion is via normal
application installation. Thus to analyze malwares on
Android OS, the analyst should first understand the
format of the Dalvik VM based program. The Dalvik
Based Android applications are released and stored in
the device with the APK format. An application is
first compiled and is then archived into one single
APK file with all of its parts, including codes and
assets. The APK file is actually an application in the
form of a ZIP archive with codes, resources, assets,
certificates and manifest file. The inner folders and
files structure of this archive conform to the JAR file
format specification. After the installation, the APK
file is copied to a specific location in the system. For
system applications, the location is typically
/system/app and for user installed applications the
location is /data/app. From the forensic analyst’s
point of view, an APK file contains three parts of

[Chandran, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1462-1467]

abstract information: signature, bytecodes and
resources.

The signature contains the message digest of
the APK file. Since any modification to the APK file
will change the message digest of the signature, one
could quickly identify if an application is corrupted
by checking the signature. Analyst could also collect
signatures of malwares to find out malwares quickly.
The executable part of the application, the classes.dex
file in the archive, contains all compiled classes of
the program in the form of bytecodes. For Android
programs, the original JAVA bytecodes are converted
to the instruction set used by the Dalvik VM, which
is a register-based VM while JVM is stack-based.
Resources is the non-executable part of the
application, it contains all additional data required by
the application. Most resources in an application are
user interface components, such as bitmaps, menus,
layouts, widgets. In most cases, the malicious part of
the malware runs in background and does not have
any user interfaces. So these UI resources are seldom
concerned. However, the resource file,
AndroidManifest.xml, is important that indicates
crucial forensic information of an application.

The AndroidManifest.xml file is encoded
into binary format in the APK file. It contains the
permission request of an application. The most
important forensic information are permissions and
components. In order to access some protected APIs
of Android, the application will declare the
permission request in AndroidManifest.xml, such as
the permissions to read message, contacts, etc.
Permission request is a very important clue to reveal
malicious functions. For instance, a normal
application, such as calculator, declares a
READCONTACTS permission, it can be very
suspicious because a calculator should never need
information about contacts. This character is unique
for Android applications and is useful for analysis.
Android applications are formed by components. The
components of the application are divided into four
kinds – activities, services, broadcast receivers and
content providers. A malware who runs in
background often has a service component and a
receiver component in order to receive the boot Intent
on system booting. By checking components and the
received intents, analyst may have a brief view of the
potential behavior of an application.

Identification of Suspicious Application

In a typical smart mobile device there are as
much as hundreds of applications. Malwares only
occupy a few parts of applications and most of the
others are benign. The first step of forensic analysis
is to identify the malicious programs from the benign

ones. Although many research works and tools are
claimed to support malware detection, there are still
some unsolved problems for forensics. In one way,
automatic tools need samples to generate malware
database. The rapid evolvement of malware makes
automatic detection tools difficult to follow [3].
Moreover, some malwares are designed for attacking
specific devices and yet are hard to be collected
beforehand. In another way, forensics not only needs
to find the suspicious programs, but also requires
code analysis and events reconstruction. Thus manual
check is helpful for later in-depth analysis, and
manual methods are essential for forensic analyst to
ensure the identification. To identify malicious
programs, one important conclusion is that malwares
are always connected with some unusual features.
These features indicate the potential suspicions.

For excluding benign applications from
affected ones, the message digest is a useful
cryptographic feature. A database for normal
applications can be built by collecting message digest
information from online markets. Then the analyst
simply checks an application’s message digest and if
the message digest of the checked application cannot
be found in database, it is possible that this
application is malign. However, only with the
message digest it is not cautious to determine the
malicious applications. A more in-depth analysis
should be employed to fulfill the identification.

The permission requirement is a unique
character for Android programs. Due to the design
philosophy of the Android OS, the application only
needs to apply for permissions when being installed
and persistently own these permissions without
repeatedly requesting. Users may ignored the initial
request, and a common malware pretending to be an
unharmful application with faked normal functions
will ask for a set of permissions such as SMS and
Contacts database access, even the faked functions
of the application need not these permissions at all.
Suspicious permission requirement is the leading clue
to confirm an Android malware. Most of the
malwares declare a list of high-privilege permissions
to fulfill malicious functions.

At the very abstract level, Android
application is formed by components. The structure
of components can be used to judge the program’s
characters. The service component and receiver
component are sensitive weapons for malwares. So,
from the examination of components and the received
intents, analyst could have a brief view of the
potential malicious function of an application and
suspicious applications are to be distinguished from
the normal ones.

[Chandran, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1462-1467]

Anti-forensics Techniques
Events could be deduced from the code.

However, malware developers always try to stop the
deduction or make it hard. Before code analysis, one
important thing is to clean the barrier – anti-forensics
codes. Anti-forensics codes are common inside
malwares of commodity personal computers. For
instance, many malwares detect the execution
environment to check whether it is executed inside a
virtual machine. Android malwares inherit the
property to inconvenience the forensic analysis. The
three common anti-forensics techniques are
obfuscation, string encryption and environment
verification.
Obfuscation

The obfuscation techniques of Android
malware are as much the same as JAVA obfuscation,
because the developing programming languages are
similar. A very typical case is that in an obfuscated
program all of the packages, classes, methods, fields
are renamed to single alphabet such as a, b, c.a(), d,
e.b, f.a, g.b(). So that analyst is hard to distinguish
different parts of the code yet is difficult for her to
understand the functionalities [4].
Strings Encryption

For an experienced reverse engineer, strings
in a program are valuable information sources. Many
malwares use string encryption to avoid plaintext
detection. Constant strings in malware are encrypted
with symmetric algorithms such as DES and the AES
and the key is fixed (dynamic key is seldom used
because no matter how complex the key is, it will
finally be used to decrypt the ciphertext). The
encryption makes static analysis hard. However, if
the analyst has the capability of dynamic execution,
the analyst may manually extract key and decrypt the
ciphertext, thus the information is still available for
retrieving.
Environment Verification

Some of the mobile malwares are designed
to attack certain types of mobile devices. Specific
symbols like Android system properties (from
android.os.BUILD) are often verified to make sure
the malware is not executed in an emulator or other
types of devices. And the subscriber ID (IMSI) is
used to make sure the malware is running on a certain
device with the special IMSI. If verification fails, the
malicious code will stop executing, and the analyzers
could not simply reproduce the malicious behavior by
emulation or using any improper devices. This anti-
forensic technique lets malware deceive dynamic
black-box analysis.

Defeat Anti-forensics codes
Some countermeasures to the anti-forensics

techniques mentioned above are decompilation and
deobfuscation, strings decryption and program
patching.
Decompilation and Deobfuscation

For an Android application, the high level
JAVA-like source code is much easier to read and to
be understood than the bytecode. However, the State
of Art decompilation tools cannot decompile
programs perfectly. The decompiled source code
typically contains mistakes or code absences. The
bytecode is always correct and accurate although it is
much more difficult to be analyzed. So analyst should
utilize both bytecode and decompiled source code,
and take both codes into analysis to compensate the
shortcomings of each other. The three main steps
suggested to employ decompilation and
deobfuscation are the analyst could use apktool to
extract the bytecode (with .dex format), the
combination of dex2jar and jd-gui are helpful to
decompile the bytecode file to JAVA source code
and the decompiled JAVA source code may contain
huge number of errors. The possible options for code
fixing are removing empty classes, renaming,
decompile errors correction, control flow error
correction, name conflict correction and missed
information fixing.
Strings Decryption

Strings are important information sources
and most constant strings(e.g. remote server URL) in
malware are encrypted. Often a decryption process is
required to extract these strings. The whole
decryption process involves encryption algorithm
recognition, secret key extraction and string
decryption. One convenient aspect is that many
malwares use system cryptographic APIs to deal with
encryption and decryption. Analyst could filter out
these situations and quick identify the key.
Program Patching

To deceive dynamic analysis, system
properties and the subscriber ID are often verified by
the malware. In order to employ dynamic analysis,
analyst could automatically search for these features
and manually patch the code to avoid these
verifications.

Detecting the Malicious Events

The core part of mobile malware forensics is
to reconstruct the malicious events via program code
and additional information such as network flow. But
in most cases the only form of malware provided is
binary program. In order to understand the logic of
the program, a reverse code analysis is essential.
Although there is not a standard procedure for

[Chandran, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1462-1467]

reverse code analysis, on Android some typical
behaviors may be the key that helps analyst unlock
the puzzle and understand the crime. The analyst can
follow the patterns to locate and then find the
malicious behaviors, and finally combines the
behaviors to deduce the events.

Android malwares are written using JAVA
programming language, and the bytecode of the
malware contains all logic functions. In mobile
malware forensic analysis, the direct evidence of
malicious events is from the malicious code itself. A
malware sample may be acquired after the crime [5].
The criminal events are unknown for analyst. Only
the code related to malicious behaviors helps analyst
fast locating and analyzing the malicious event first.
The reverse code analysis aims at extracting program
fragments first, analyst could then combine simple
functions into a high-level abstract events. The
reconstructed events may include following
information, the work flow of malicious code,
sensitive information that the malware accessed, the
encryption algorithms, and the details of malware’s
communication protocols. The Figure.1. shows
Malicious Events Reconstruction.

Figure 1. Malicious Events Reconstruction

The task of reconstruction and combination

requires not only the mining of function inside codes,
but also rearrangement of these functions into a
correct order. Android provides a logcat mechanism
to capture high-level operations such as the system
API calls and services starting/stopping log. If
allowed, analyst should try to reappear the execution
of malware and record the occurred operations, and
then draw the picture of the events.

Case Study
A complete forensic analyzing process to

show some details of mobile malware analysis is
described below. The process of forensic analysis
could be divided into four parts. The Figure 2. shows
The Suspicious Application Utility Hub.

Figure 2. The Suspicious Application - UtilityHub

Background
The challenge offers the exploration of a

real smart phone compromised by mobile malware,
based on Android, after a security incident. Analyst
will have to analyze the image of a portion of the file
system, extract all that may look suspicious, analyze
the threat and finally give conclusion.
Identification of Suspicious Program

There were totally ten applications and two
tmp files contained in the provided corrupted
memory dump. Among the ten applications, seven
files’ message digest can be found online and are
considered as normal, trusted packages.
• com.adobe.reader-1.apk
• com.google.android.stardroid-1.apk
• com.rovio.angrybirds-1.apk
• com.android.vending-1.apk
• com.google.android.apps.maps-1.apk
• com.google.earth-1.apk
• com.opera.browser-1.apk

For the rest three packages, although the
message digest are not found online, further

[Chandran, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1462-1467]

examined the permission and component and
decompiled these packages, found nothing
suspicious for com.google.android.apps.finance-
1.apk and net.xelnaga.exchanger-1.apk. Then the
only left application, app/com.aditya.utilityhub.apk is
exactly the same as the tmp files app/vmdl34052.tmp
and lgdrm/TRYSYNC, which means this application
was possibly active when the memory was dumped
and further checked the requested permission of this
application and found the following permissions are
requested.
• android.permission.INTERNET
• android.permission.READ PHONE STATE
• android.permission.ACCESS NETWORK STATE
• android.permission.RECEIVE BOOT
COMPLETED
• android.permission.VIBRATE
• android.permission.ACCESS COARSE
LOCATION
• android.permission.ACCESS FINE LOCATION
• android.permission.CALL PHONE
• android.permission.SEND SMS
•android.permission.READ CONTACTS
• android.permission.RECEIVE SMS
• android.permission.READ SMS
• android.permission.WRITE SMS

The application however performed as a
normal 3 in 1 utility tool with Google Search when
executed. The unusual number and type of
unnecessary requested permissions makes it
suspicious and then focused on this suspicious
application com.aditya.utilityhub.apk to employ
analysis in depth.
Anti Anti-forensics

This malware uses all the three anti-
forensics techniques such as obfuscation, string
encryption and environment verification to interfere
forensic analysis. Here the code error fixing is
employed to get a neat version of decompiled code
for static analysis. The raw code from the decompiler
contains lots of errors. To fix these errors, the
bytecode is analyzed, and rebuilt the source code.
Since all malicious parts of the code are obfuscated
by name renaming (e.g.,
com.aditya.utilityhub.daemon.g.a.a), it is need to do
code refactoring. The Depth-First Search is used in
the procedure of refactoring all source codes. The
atomic functions were refactored first then the
complex ones. When looking into the decompiled
code, some empty JAVA classes were found without
fields or method definitions. Some of these situations
are due to the decompiler’s processing capability and
the correct code should be manually added after
further examination to the corresponding bytecode.
Evidences and Malicious Event Rebuild

According to the code analysis result, rearrange
the sequence of each functions and formed a
complete malicious communication process. The
process contains four parts.
1. Key exchange: The first step of the

communication between the malware and the
server is a self-defined diffiehellman key
exchanging to establish a secret key. The typical
Diffie hellman key exchange algorithm is used in
the negotiation, and then DES is used in
encrypted communication.

2. Encrypted private information sending: The
communication between malware and remote
server is based on HTTP protocol. The
following private information are sent via
encrypted communication.

• device information
• personal information SMS
• contacts
• .daemon.fc9
• com.

aditya.utilityhub.daemon.CCcomServic
e

• com.
aditya.utilityhub.daemon.BootReceiver

3. Server command receiving: The malware
requests command from server every 15
seconds, and executes the command. Some
commands involve extra communication while
executing. For commands “getsms”,
“getcontacts”, the malware will send SMS or
contacts information to server when executing.

4. The ”smsspy” communication: A very special
command from the server is the ”smsspy”
command. When receiving, the malware will
change the malicious mode into an ”smsspy”
mode and send any SMS to server whenever an
SMS is coming from mobile network.

Conclusion

In this paper the problem of Android mobile
malware forensic analysis is discussed. A huge
number of malwares are developed to threaten the
data privacy and system security of smart mobile
devices. A modern digital forensic analyst should
know these threats and be able to employ forensic
analysis against mobile malware. The core task of
mobile malware forensic analysis is to reconstruct the
malicious events according to malware. To address
this issue, a systematic procedure of analyzing typical
malware behaviors on the popular mobile operating
system Android is proposed and based on the
procedures, the deduction of Android malicious
events are also done.

[Chandran, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1462-1467]

Acknowledgment
This work is supported by my research

guide. I am very thankful to my research guide Mr.
Arundas K.V., Lead Android Programmer, BlackJack
Apps, Trivandrum, for his support and guidance.

References

[1] Takamasa I., K. Takemori and A. Kubota,
“Kernel-based Behavior Analysis for
Android Malware Detection,” Proceedings
of the Seventh International Conference on
Computational Intelligence and Security,
Berkeley, US, pp.1011-1015, 2011.

[2] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang,
“Hey, you, get off of my market: Detecting
malicious apps in official and alternative
android markets,” Proceedings of the 19th
Annual Network and Distributed System
Security Symposium, Vienna, Austria,
pp.129-132, 2012.

[3] Asaf Shabtai, “Malware Detection on
Mobile Devices,” Proceedings of the
Eleventh International Conference on
Mobile Data Management, Columbus, US,
pp.289-290, 2010.

[4] Ilsun You and Kangbin Yim, “Malware
Obfuscation Techniques: A Brief Survey”
Proceedings of the 2010 International
Conference on Broadband, Wireless
Computing, Communication and
Applications, Berkeley, US, pp.297-300,
2010.

[5] G. Benats, A. Bandara, Y. Yu, J. Colin, and
B. Nuseibeh,“ PrimAndroid: Privacy Policy
Modelling and Analysis for Android
Applications” Proceedings of the 2011 IEEE
International Symposium on Policies for
Distributed Systems and Networks,
Columbus, US, pp.129-132,2011.

AUTHORS PROFILE

Aparna Chandran, received her B.Tech degree from
Calicut university and currently pursuing M.Tech in
Computer Science and Engineering at Nehru College
of Engineering and Research Centre, Thrissur (Dist.),
Kerala, India. Are of interests are Networking,
Operating System, Database and Digital Image
Processing.

